GraphPad PRSSM Version 5.0

Prism Tour for Mac 🗳

CONTENTS

プリズムツアー概要	2
1. 新しいプロジェクトの作成	2
2. データの入力	3
3. 自動グラフ化機能	4
4. データの分析	5
5. グラフのカスタマイズ	8
6. 印刷とエクスポート	10
7. グラフの複製	10
8. グラフの編集	13
9.グラフのレイアウト機能	14
10. 自動リンクおよび更新機能	15
11. ノート追加機能・便利な機能	16

プリズムツアー概要

Prism 概要

GraphPad 社の Prism は生物統計、カーブフィット(非線形回帰)、そして科学的なグラフ作成機能を一つにまとめた プログラムです。

このツアーは Prism の主な機能を紹介し、ソフトウェアに慣れていただくことを目的としています。このソフトウェアは 使い易さという点を重視して設計されていますので複雑に考える必要はありません。間違いを恐れずに、色々な 操作を試してください。どうしてもうまく操作できない場合にはヘルプやマニュアルを参照して Prism の正しい操作 方法や統計知識と情報を見つけましょう。

ムービーを見る

ッアーはムービーとしても用意されています。Prisimを起動し、Welcome to GraphPad Prism ダイアログで "Learn to use Prism"を選択します。

新しいプロジェクトの作成

最初にグラフの種類を決定します

Prism では作成したいグラフの種類を選択し、エラーバーに関する設定を最初に行います。選択したグラフの種類 に合わせてデータテーブルが用意されます。

グラフとデータテーブルの種類

Prism には XY グラフ(XY graphs), カラムプロット(Colunm graphs), グループプロット(Grouped graphs), 分割表分 析(Contingency tables), 生存分析(Survival plots) という5種類のグラフタイプがあります。Welcome to GraphPad Prism ダイアログにそれぞれタブが用意され、ダイアログの中央に各カテゴリの代表的なグラフが表示されています。

次のスクリーンショットは XY グラフが選択された場合の例です。

点、点と線、棒などの形式でXYグラフを作図することができます。基本的なグラフの種類を選択し、表示されたアイ コンから、作成したいグラフに最も近似したものを選びます。グラフアイコンの下に、誤差に関する設定項目があり ます。ここで既に計算済みの誤差を利用するか、または Prism に計算させるか設定を行います。

000	Welcome to GraphPad Prism
Š prijn	e Version 5.0a
Learn to use Prism	Available analyses
Open a file	Linear regression Cubic spline & LOWESS Smooth curve Correlation (Pearson or Spearman) Area under curve
NEW TABLE & GRAPH:	Organization of data table
(XT)	
Column	Start with an empty data table
Grou ped	Use sample data How is an XY table organized?
Contingency	
Survival	
	Selected-graph: Points only
CLONE FROM:	
Opened project	X: Enter X error values to plot horizontal error bars
Recent project	Y: C Enter and plot a single Y-mile for each point
Saved example	Enter 2 3 replicate values in side-by-side subcolumns;
Shared example	Enter and plot error values calculated elsewhere
	Enter: Mean, SD, N
	(Paret)
	Cancel

新しいプロジェクトを作成するにあたり、適したカテゴリのデータテーブルを選択することが大事です。ここで、グラフ の形式だけに捕らわれないように注意してください。グラフによって値を入力するデータテーブルは異なります。つ まり、グラフのカテゴリが違えば、データテーブルのフォーマットも異なります。グラフの種類を変更することは簡単 ですが、一度入力したデータテーブルのフォーマットを変更するのは手間がかかります。作成した XY グラフ用のデ ータテーブルを後からカラムプロットのデータテーブルに変更するような作業は、できるだけ避けてください。

実際にグラフを作成してみましょう

1. Prism を起動し、Welcome ダイアログで XY タブを選びます。

2. Use sample data の項目から"Exponential - One phase decay."を選択します。

** ここでは例として予め用意されているサンプルデータを利用します。実際に自分のデータを使う場合は、目的とするグラフアイコンを選び、次に誤差に関する設定を行います。

2. データの入力

データテーブルのフォーマット

Welcome ダイアログでグラフを選択すると、Prism は選択されたグラフに対応したデータテーブルを作成します。

ステップ1でサンプルデータ"Exponential - One phase decay."を選択した場合、「3回の繰り返しのある XY グラフ (Enter [3] replicate values in side-by-side subcolumns.)」がデフォルトで設定されます。 一つの X 列と2 回分の繰 り返しデータを入力する Y 列からなるデータテーブルが作成されます。

実際に入力する

1. ステップ 1 で選んだサンプルデータは、次の図に示すように3つのサブカラムのあるデータテーブルで表示されます。空白のセルが存在しますが、それは問題ありません。Prism が自動的に処理しますので、欠損値はそのままにしておきます。 テーブルの種類やサブカラム数を変更する時は、左上隅にある Table format ボタンをクリックします。

1	-	x		A			B	
-		Minutes		Control			Treated	
	0	×	A:Y1	A:Y2	A:Y3	B:Y1	B:Y2	B:Y3
1	Title	1.0	8887	7366	9612	6532	7905	7907
2	Title	2.0	8329		8850	5352	5841	6277
3	Title	3.0	7907	8810	8669	5177	4082	3157
4	Title	4.0	7413	8481	6489	3608		4226
5	Title	5.0	7081	7178	5716	2559	3697	2816
6	Title	6.0	6249	6492		1671	3053	2891
7	Title	8.0	5442	6172	6409	2264	1658	1879
8	Title	10.0	4020	3758	4138	1905	1302	1406
9	Title	14.0	4559	3146	2547	2994	1338	739
10	Title	20.0	3033	1587	2754	1444		760
11	Title	25.0	2105	1707	2152	281	484	765
12	Title	30.0	1005	2156	1185	1103	1517	833
13	Title	50.0	820	1513	1591	1918	1128	1293
						1.165		

2. このサンプルデータにはデータの構造と分析方法を記述したフローティング・ノート⁽¹⁾が付いています。このフロー ティング・ノートを最小化する場合は右上隅のアイコンをクリックします。Prism5の新機能であるフローティング・ノー トは、データシートごとに用意でき、必要な情報を書き込むことができます。

Clipbo	ard	Analysis	Change	Import Dra	w Write	Text	Ex	port Print	Send
	•	🖌 🛃	(∑)X↓+ (## ● 123	@	$- \begin{bmatrix} 0 & \boldsymbol{\alpha} & 13 \\ \mathbf{T} & \mathbf{I} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \mathbf{A} & \mathbf{A} & \mathbf{B} \end{bmatrix}$	Verdana I <u>U</u> X ² X ₂ m ²			@ •
		x		A O	•				
	UNE .	Minutes		Contre	How the data are a	rranged			
		o x	A:Y1	A:Y2	triplicate for Control	and Treated condit	ions. Some co	ells are bl	ank to
1	Titl	1.0	8887		missing data.				
2	Titl	2.0	8329		The goal To fit an exponential decay curve to determine the rate constant o also the starting and plateau Y values).				
3	Tit	3.0	7907						
4	Titl	4.0	7413						
5	Titl	5.0	7081		To fit an exponential decay curve				
6	Tits	6.0	6249		 Click Analyze. Choose nonlinear r 	egression from the	list of analys	es for XY	data.
7	Tit	8.0	5442		3. Open the exponent	tial panel of equation	ins		
8	Tits	10.0	4020		4. Choose "One phas	se exponential deca	у".		
9	Tits	14.0	4559		Click below to learn more about fitting exponential data.				
10	Tit	20.0	3033	-	Chan bu atan instruction		dama data		
11	Titl	25.0	2105	-	707 2152	281	464		700
12	Titl	30.0	1005	2	156 1185	1103	1517		833
13	Titl	50.0	820	1	513 1591	1918	1128	1	293

データのインポート

サンプルデータを利用しない場合、データを直接データテーブルに入力する方法や、Excelファイルやテキストファイ ルからデータをインポートしたり、Excelのスプレッドシートからコピー&ペーストしてデータを入力する方法がありま す。データをインポートする場合は Prism ツールバーにある Import ボタンをクリックして、目的のファイルを選択し ます。データのインポートやコピー&ペーストの際にフィルタ機能を利用すれば、条件に合った行や列だけを取り込 むことができます。

3. 自動グラフ化機能

グラフの自動作成

データテーブルにデータを入力すると、Prism は自動的にグラフを作成します。最初に表示されるグラフは、Prism の Edit メニュー⁽¹⁾にある Preferences⁽²⁾でコントロールできるフォント、線幅、エラーバーフォーマット、カラースキーム のデフォルト情報を元にして作成されます。

⁽¹⁾ Windows 日本語版:フローティングメモ

⁽¹⁾ Windows 日本語版:編集メニュー

⁽²⁾ Windows 日本語版: 設定

Info Sheel	t File	Locations	Send to MS Office
View	File & Printer	Graph	Analysis Interne
Axes			Default color scheme-
<u>H</u> eight:	5.08 cm		*Black and white 💌
<u>S</u> hape:	Wide	~	
Frame:	No frame	~	Fonts
- Thickness	1 ot		Main <u>r</u> ive
	n pr		A <u>x</u> isTitles
lic <u>k</u> s:	Uutside	*	Numbering
Error Bar-			Logondo * Loholo
Style:		~	
<u>V</u> alue:	SEM	~	Embedded tables
Thick <u>n</u> ess:	2 pt	~	<u>R</u> ow Titles
Symbols & Li	nes		
Symbol si <u>z</u> e:	4 •	✓ Line Thickn	ess: 1 pt 💌
Bar graphs		1.0	
Gap Betwee	n Columns: 50	<i>7</i> 6	
u ap betwee Par Pardar	n aroups (two gro	uping valiables i	uniy). Tuu %
bai buiuei.	2 pt	*	

実際に作ってみましょう

1. Prism ウィンドウの左側にある Prism ナビゲータツリーにあるグラフ名をクリックすると、選択されたグラフが画面 に表示されます。 データテーブルとグラフは同じ名前になります。(ステップ 1 で説明したサンプルデータを利用し ている場合、両者とも"Exponential decay"となっています。)グラフ名をクリックすると同時にデータシート名も太字 で表示され、またデータシートをクリックすると対応するグラフ名も太字で表示されます。仮にデータテーブル名を変 更すると、グラフ名やそれに関連する全てのシート名が自動的に変わります。

Note: ここでのエラーバーは Preferences ダイアログのデフォルト設定にあるように「標準誤差」(Error Bar-Value: SEM)を示します。標準偏差やデータの範囲を示す場合はシンボルをダブルクリックして Format Graph ダイアログを 表示して、種類を変更してください。

4. グラフを拡大、縮小表示する場合は画面右下にある拡大ツール 오 そ利用します。拡大ツールをクリック すると、画面に表示される大きさが変わります。拡大・縮小されるのは画面上のみで、印刷や画像エクスポートには 影響しません。 グラフの実サイズを変更する場合は Resize ボタン⁽¹⁾を利用します。

4. データの分析

分析手法を選ぶ

⁽¹⁾ Windows 日本語版: リサイズボタン

カーブフィット、データの変換と正規化、さらに統計的検定と分析など、Prism には多くの機能があります。

実際に分析してみましょう

1, データテーブルまたはグラフを表示している状態から Prism ツールバーの Analyze ボタン⁽²⁾ **二 Analyze** をクリックします。

2. 目的の分析手法を選択します。

ここでは、データに対して非線形回帰(カーブフィット)を実行します。Analyze Data ダイアログでは図に示すように XY 分析の項目"Nonlinear regression (curve fit)"を選択して OK ボタンをクリックします。デフォルトでは、Prism は 画面右に表示されるすべてのデータセットを対象にして分析を実行します。ここではデータ Control と Treated に対 して分析が行われます。ここに表示されるデータのうち、分析対象以外のものはチェックを外します。

3. Analyze Data ダイアログで分析手法を選択すると、分析の詳細を設定するための Parameters ダイアログが表示されます。非線形回帰(カーブフィット)の Parameters ダイアログには多くのオプションがありますが、ここでは細かくチェックせず式だけを選びます。 Exponential にある one-phase decay モデルを選び、OK ボタンをクリックします。

binding - Kinetics Binding - Kinetics P Enzyme Kinetics V popertential Cost posts deary Prices - Mediometry on e phase decay	Move Up
bose a regulation befording - Kinetics befording - Kinetics before the second second before the second second second before the second second second second before the second second second second second second before the second	Move Up
Binding - Kinetics Enzyme kinetics Enzyme kinetics Use promential Orie prise decay Prices followed by one phase decay	Move Up
Enzyme kinatics Vegeneratina Ore prase decay Prictor followed by one phase decay	Move Up
V Exponential One phase decay Platess follower by one phase decay	Move Up
One phase decay Piateau followed by one phase decay	Mana Dan
Picteas followed by one phase decay	
The share description	(MOVE DOV
two phase decay	
Three phase decay	
One-phase association	
Plateau followed by one phase association	
Two phase association	
Exponential growth equation	
⊨ Lines	
▶ Polynomial	
▶ Gaussian	U
▶ Sine waves	¥.
Classic equations from prior versions of Prism	
If you have subtracted off the nonspecific signal, constrain Plateau to a co	nstant value of 0.0
One phase decay	(?) I earn about his equation
	0
ting method	
Least squares (ordinary) fit 💫 Automatic outlier elimination	Rcbust fit
erpolate	
Interpolate unknowns from standard curve. Confidence interv	al: None 🗘

どの式を選択すべきか、よく分からない場合は Learn about this equation をクリックします。式に関する情報はオンラインヘルプで参照できます。

▼ Exponential	(Move Up
One phase decay	
Plateau followed by one phase decay	Move Down
Two phase decay	
Three phase decay	
One-phase association	
Plateau followed by one phase association	
Two phase association	
Exponential growth equation	
▶ Lines	
▶ Polynomial	
▶ Gaussian	
► Sine waves	
Classic equations from prior versions of Prism	Ŧ
If you have subtracted off the nonspecific signal, constrain Plateau t	to a constant value of 0.0
One phase decay	(?) Learn about this equation

4. 分析結果は結果テーブル(Analysis Result table)に出力されます。 画面左側の Prism ナビゲータにある、"Table

⁽²⁾ Windows 日本語版:分析ボタン

of Results"をクリックするとカーブフィットの計算結果が表示されます。

000		 Exponential of 	iecay, pzt						
File Shoet Undo Cil	loboard Analysis linterpret	Change	Draw Wrbe	π.	eot		Deport	Print	Send
3= 🕼 🖌 🖶 🗶 🤘 🦕	6 % E # 👘		📢 α, 🕐	4) (Verdana		1 A	227	<u>ا ا ا ا</u>	8.
1 🗂 💿 🙁 New = 🥱 🗈	🗈 = Analyza 🦌 🚨 ,	ii 🗔 129	TOA	BIU	$\times^2 \times_2$	8 A 🖂	. 🗊	6	æ
🖌 🤖 Family	North B	A	8	C	D	E	F		G.
r 🛅 Data with Results	Table of results	Cores	Treated	TBs	TES	T88	T8s		T 84
🐨 💼 Exponential decay									
v 🛃 Nomin fit of Expo	 One-phase decay 								
Table of results	2 Best fit values								
Euromany table	3 79	9992	9692						
Data Tables	4 Plateou	987.0	1154						
indo.	5 10	0.08927	0.3042						
UPROJECTI PRO 1	6 PRafLife	7.765	2:278						
Pesuts	y Span	9005	8440						
Graphs	8 Std. Error								
Exponential decay	9 10	363.7	605.5						
Caylouts	10 Filebou	300.3	161.5						
 Confliction with antice 	11 K	0.01150	0.034465						
	12 Span	390.6	580.8						
	13 55% Confidences Internalia								
	14 170	9253 to 91732	8342 So 10425						
	ss Plateou	254.355 1720	825.3 to 1482						
	94 ×	0.00509 to 0.1128	0.2345 55-0.3743						
	17 Pilaf Lfo	6.14210 10.55	1.052 to 2.900						
	sa Sipan	8211 to \$8000	7259 to 9625						
	52 Goodness of Fit								
	20 Degrees of Freedom	34	34						
	21 88	0.9401	0.9196						
	22 Absolute Sum of Squarers	1.685e-047	1.256e+007						
	23 - 57.5	704.8	607.7						
	24 Constraints								
19			-	· · · ·				-	0.410
ীয়ঃ বি চ		ionia fit of Exponentia	a delve) [Fratie of resu	lis ti					

5. Interpret ツールバー⁽¹⁾をクリックすると実行した分析に関するチェックリスト(Analyze Checklist)を表示します。分析結果を統計的に解釈する際にご参照ください。

6. ナビゲータツリーで同じグラフ名クリックをすると、フィットした曲線の付いたグラフを表示します。リンクしている データテーブル、グラフ、分析結果が太字で表示され、データを更新すると、グラフと分析結果も自動的に更新され ます。

⁽¹⁾ Windows 日本語版:説明ボタン

5. グラフのカスタマイズ

グラフのフォーマットをカスタマイズする

グラフ上の任意のオブジェクトを自由にカスタマイズできるのも Prism の特徴です。データポイントをダブルクリック すると、記号のサイズや形、色を編集できます。 背景色やカラースキームを変更する場合は Prism ツールバーに あるフォーマットツール(formatting tools)を利用します。矢印、円、矩形、テキスト、ギリシャ文字、数式 なども追加 でき、分析結果ウィンドウの情報をグラフに貼り付けることもできます。Prism は関連するシート間のリンクを保持す るので、データが更新されれば、グラフだけではなく貼り付けられた分析結果も更新されます。

実際に編集してみましょう

1. グラフ上の任意の記号をダブルクリックし、Format Graph ダイアログを表示させます。Appearance タブから、色を青に変更します。記号の形を一緒に変更してもかまいません。

2. Data Set:のプルダウンリストから、もう一方のデータセット(Exponential decay: Treated)を選択し、色を赤に変更します。

vata set: Expone	ential decay: Treated	3	V-<->	AI
Style				
Appearance: Mean	and Error	✓ Plot:	SEM	~
Show symbols —				
Color:	 Shape: 	•	Border color:	Ψ.
	Size:	4 🔳 👻	Border thickness: 2	pt 🗸
Show bars/spikes	/droplines			_
Color:	• Width:	Y	Border color:	
Bars begin at Y =	Pattern:	Y	Border thickness:	~
Show error bars -			_	
Color:	▼ Dir.: Both	Style:	T 🔽 Thickness: 2	pt 🔽
Show connecting	line/curve			
Color:	Thickness:	1 pt 🗸 🗸	Start line at origin	
Style:	V Pattern:	~	One line for each	subcolumn
When axis is disc	ontinuous, also placi	e gap in line	Leave gap at sym	bols
Show area fill —			-	
Fill color:	Area pattern	~	Pattern color:	•
Position: Below	~			
Additional options -				
Ploton: 💽 Left Ya	xis	Show le	egend	~
O Dialet V	axis	Rev	vert legend to column title	

3. それぞれの曲線色をダブルクリックし、記号と同じ色になるように変更します。

4. グラフタイトル ("Exponential decay")をクリックし編集します。

5. Write ツールバー⁽¹⁾のギリシャ文字挿入ボタンを使ってギリシャ文字を追加し、Text ツールバーのサブスクリプ トボタンを使ってタイトルを作成します。

Arrange Draw Write	Text	Export Print Send
	Β <i>Ι</i> <u>U</u> × ² (X ₂) π̂ π	
Dissocia	ation of α_2 recepto	Ins
12000		- Control
10000-		Treated

⁽¹⁾ Windows 日本語版:注釈ツールバー

6. グラフの Y 軸をダブルクリックして Format Axes ダイアログを表示します。 "Automatically determine the range and interval"のチェックを外し、軸の最大値(Range-Maximum:)を 12,000、主目盛の間隔(Regulary spaced ticks-Major tick interval)を 2,000 に設定します。

7. Change ツールバー⁽¹⁾にあるカラースキームボタン^よをクリックし、グラフの背景色をライトブルーに変更します。 カラースキームツールのアイドロッパー くを使って、任意の色を選択することもできます。

8. 結果テーブル(Analysis Result table)の選択範囲をコピーしグラフにペーストします。元のデータを変更すると、 貼り付けられた表の内容も同時に更新されます。

⁽¹⁾ Windows 日本語版:変更ツールバー

6. 印刷とエクスポート

Export ボタンを使う

Export ボタンを使用してグラフをエクスポートします。wmf, emf, pdf, eps, tif, jpg, png, bmp, pcx フ オーマットをサポートしています。

Print

Print ボタンを使う

グラフやレイアウト、そして Prism プロジェクトファイルのすべてのシートを印刷します。上のアイコンは印刷ダイアログを表示し、下のアイコンは画面上のシートを直接印刷します。

5	Sen	d
100		
-		
-		1
- 51	2.11	
- 21	1000	
-	_	
-		
100		
-	100	
100	- Carlor 1	
1.000	PP-04	
	ALC: NOT	

6

Send ボタンを使う

グラフやレイアウトをEメールまたは FTP サーバに送出します。また、Mac 版では Keynote に送ることができます。

※ Windows 版では Word や PowerPoint に送ることができます。

実際に試してしてみましょう(Mac 版)

Keynote に送るボタンをクリックして、新規 Keynote のスライドを作成します。

7. グラフの複製

複製(Cloning)

Welcome ダイアログでは新たにグラフを作成するだけでなく、既存のグラフを複製することもできます。画面に開い ているプロジェクトファイル、最近利用したプロジェクト、例として作成したグラフなど、様々なグラフを複製できます。 既存のグラフをそのまま複製しますが、その後で自由にデータを変更することができます。

実際に試してみましょう

1. 既存のプロジェクトに新たなデータテーブルやグラフを追加、分析を実行する場合は Sheet ツールバーにある New ボタンをクリックし、"New data table and graph"を選択します。

2. 開いているファイル(Opened Project)から複製するグラフをクリックします。最近利用したプロジェクト(Recent Project)や例題のプロジェクト(Saved example)を複製することも可能です。

000	New Data Table and Graph
NEW TABLE & CRAPH: XY Column Grouped Contingency Survival CLONE FROM:	New Data Table and Graph • Exponential discay.pef
Open Project Recent Project Saved Example Shared Example	Thumbnail size:

3. 作成したサンプルグラフを選び、右下にある Clone ボタン⁽¹⁾をクリックします。

4. 新規に複製されるグラフに、グラフのどの部分を含むか選択します。デフォルトでは Y 値を削除し、X 値と列名 はそのまま残します。もう一つのタブダイアログを利用してサブカラム数の調整や、新規作成グラフの名前を決定します。ここでは名前を "Clone of exponential decay graph"とします。

Example Data	Subcolumn Format
Preview	Example Data
Dissociation of 1, monstorm	🗹 Delete Y values
국 :==	Delete X values
AF I	📃 📃 Delete column (data set) titles
	Delete row titles
fitle of the cloned table	
crone or exponential tecay)

5. 他にも設定を変更します。Subcolumn Format のタブをクリックします。そして X 列に対して Y をひとつだけ作成 するオプションを選択します。 これにより Control と Treated 用の列は1つだけになります。 Prism は同じ X 列を持 つ新規データテーブルを作成します。

⁽¹⁾ Windows 日本語版:コピーボタン

Clone Example				
Example Data Subcolumn Format				
Y subcolumn for replicates or error bars				
Enter and plot a single Y value for each point				
Enter 2 🔅 replicate values in side-by-side columns				
Enter and plot error values calculated elsewhere				
Enter: Mean, SD, N				
X error bars				
Enter X error values to plot horizontal error bars				
(?) Go Back OK				

6. データテーブルには次の図のようにデータを入力します。

ď		x	A
		Minutes	Control
	8	x	Y
1	Title	1.0	9100
2	Title	2.0	
3	Title	3.0	
4	Title	4.0	
5	Title	5.0	6400
6	Title	6.0	6300
7	Title	8.0	4100
8	Title	10.0	100
9	Title	14.0	3277
10	Title	20.0	2444
11	Title	25.0	
12	Title	30.0	2099
13	Title	50.0	1987
-			

7. Prism ナビゲータの新規グラフの名前の部分をクリックします。新たなデータを元に新しいグラフと曲線が作成 されます。曲線の色やフォントなど、オリジナルのグラフとまったく同じになります。貼り付けた分析結果の表も、こ の新規データを元に計算したものになっています。

8. グラフの編集

Prism Magic (Make Graphs Consistent) ツールを使って、同様のグラフを作成しましょう。

実際に試してみましょう

最初に作成したグラフを編集します。

1. ナビゲータツリーで元になるグラフ (Exponential decay)を選択します。 Change ツールバー⁽¹⁾にあるカラース キームボタンを使ってグラフの色を変更します。 ここでは Color Scheme から "Stained glass"を選びます。

2. Y 軸をダブルクリックして Format Axes ダイアログを開き、最大値(Maximun)を 10,000 にします。

		Format Ax	es
	Frame and Origin	X Axis Left Y Axis	Right Y Axi
Gaps and Direct	ion: Standard		Scale:
Automatically	determine the range	e and interval	
Range			
Minimum: 0.0	5	Maximun	10000.0
4000-	20 Minutes	40 60	
	Contro	Treated	1
THE OWNER WHEN THE PARTY OF	e Intervais		
95% Conndend			
95% Confidence Y0	9253 to 107	32 8362 to 10825	
95% Confidence Y0 PLATEAU	9253 to 107 254.3 to 172	32 8362 to 10825 10 825.3 to 1482	
Y0 PLATEAU K	9253 to 107 254.3 to 172 0.06569 to 0	32 8362 to 10825 0 825.3 to 1482 1.1128 0.2341 to 0.3743 4 952 to 252	
95% Contigent Y0 PLATEAU K Haif Life	9253 to 107 254.3 to 172 0.06569 to 0 6.142 to 102	32 8362 to 10825 50 825 3 to 1482 51 128 0 2341 to 0 3743 55 1 852 to 2 960 2 2 2 2 2 0 0 0	

次に Magic 機能を使って、他のグラフをこのグラフにマッチさせるようにします。

3. ナビゲータツリーで2つめのグラフ(Clone of exponential decay)を選択します。このグラフを Prism Magic で編 集します。

⁽¹⁾ Windows 日本語版:変更ツールバー

成したグラフのサムネイルをクリックします。

4. Change ツールバー⁽¹⁾の Magic ボタン ^个をクリックします。 Magic ダイアログが表示されるので、先ほど作

0.0	Maple Stop 1 - Select graph to use as one	ands.
uke the selected grapher look h	et Dist arte	
• This Project		

5. Next ボタンをクリックし、現在のグラフに適用させたい項目をチェックします。変更後のグラフが、左下のパネ ルにプレビューとして表示されます。

Example graph	Original
Presentence to angely Craphorigin and appropriet	Description of president
Series used for numbering pay Mappearate of symbols, bei Mappearate of symbols, bei Mappearate of symbols, bei Mappearate of symbols and symbol Drawlops	etc. etc.

6. OK ボタンをクリックします。グラフが先ほどのグラフと同じようになります。

9.グラフのレイアウト機能

複数のグラフをレイアウトに配置する

Layout 機能を使って、複数のグラフを1ページに配置することができます。

実際に試してみましょう

グラフをいくつか作成した後、それらをレイアウトとして組み合わせることができます。

1. Sheet ツールバーの New ボタンから New Layout⁽¹⁾を選択します。

⁽¹⁾ Windows 日本語版:変更ツールバー

⁽¹⁾ Windows 日本語版:シートツールバー → 新規ボタン

2. レイアウト画面に配置するグラフの数と配置を選びます。ここでは2つのグラフを次の図のような位置に配置します。

Create New Layout						
 Add one more graph to the page Array of graphs: 1 across by 2 down Standard arrangement 						
Arrangement of graphs						
Page options						
Orientation: Orientation: Cundscape						
Background color:						
Include master title on top of page						
(?) Cancel OK						

3. ナビゲータの Graphs から、目的のグラフをレイアウト画面にドラッグ&ドロップします。他のファイルに含まれる グラフの場合はブラウズ機能を使います。

4. レイアウトに文字や矢印、画像などを追加する場合は Draw⁽¹⁾や Write⁽²⁾ツールバーを利用します。 複数のグラ フのサイズの変更、位置揃えを行う場合は Arrange ツールバー⁽³⁾を利用します。

10. 自動リンクおよび更新機能

自動リンクと更新機能

全ての作業内容をトラッキングできるようになっています。データテーブル、情報シート、結果テーブル、グラフ、レイ

⁽¹⁾ Windows 日本語版: 図形ツールバー

⁽²⁾ Windows 日本語版:注釈ツールバー

^③ Windows 日本語版: 配列ツールバー

アウトの各画面はすべてリンクしており、Prism はそれらのリンク情報を常に管理しています。

データを変更すると Prism は自動的にリンクした分析計算を再度実行し、グラフを再描画します。その結果、分析結 果も同時に更新されることになります。 Prism の操作画面には常に最新のデータを元にした分析結果とグラフを表 示します。

仮に情報定数(Info constants)を変更すると、Prism は自動的にリンクした分析の再計算し、その定数を利用してい るグラフとレイアウトを作り変えます。

グラフを編集すると、Prism は自動的にリンクしたレイアウトを再描画します。

実際に試してみましょう

Exponential decayの分析結果シートを表示してみてください。 左上にあるボタンをクリックして Parameters ダイアロ グを表示します。 選択した内容や変更点が確認できます。

			 Expense 	TO ALL DOCLAY, DOLL							
File Sheet Undo	Clotes	and Anallysis linterpre	t Change	Draw Writ			Teot		Deport Print	Sond	1
🕒 - 🗊 🖌 🖶 🗶 - 🎯 👔	6 B	R 12 🖩 🛛 😱			α 🔹 🗄	Baskervi	le			- 🚳 -	33
🗂 🗂 😗 🍝 herr 🐂 🛙	b D	• 🚍 Analyze 🎽 🚉	📑 😡 129	T	A A	BIU	$X^2 (X_2 \equiv 1)$	e 🖃	🗊 ₆	8	Ĩ
▶ 📴 Family	-	Norin R	٨	0	С	D	C	F	6	н	6
m 🛅 Data with Presults	\leq	Table of nesults	Control	Treated	Trio	Title	Title	Title	Titlo	Title	1
🐨 🏢 Expon-ential decay											н
v 🔛 Nomin fit of Exposer	1	One-phase decay									1
📙 Table of results	2	Best St values									1
Euromany table	3	90	9992	959/3							1
w 📗 Clone of Exponential deca	4	Ptateou	987.0	1154							1
Is U Nomin R of Clone of Es		к	0.08927	0.3042							1
Data Tables		PRofiLife	7.765	2.278	<u> </u>						1
Y is help	7	Spen	9005	8440	<u> </u>						1
W Projecti Pro 1	6	Std. Error									1
p Heades		Y9	363.7	605-5	<u> </u>						ų
T Graphs	10	Planey	360.3	161.5							1
Chee of Expendiation	- 11	к	0.04159	0.03446							1
m Call avoids	12	Span	390.8	580.8							1
Ellavort 1	13	95% Confidence Intervals									1
w California Niction	14	10	9253 to 10732	8362 to 10825							1
> Data with rotes	15	Frateou	254.3 to 1720	825-3 to 1462							1
	18.	ĸ	0.06569 to 0.1 128	0.2341 to 0.3743							1
	17	Haf Lfe	6.142 to 10.55	1.652 to 2.960							1
	15	Span	8211 16 9800	72510 15 9621							1
	12	Goodness of Fit									1
	22	Diagraps of Freedom	54	34							1
	21	alat.	0.9401	0.9196	<u> </u>						1
	22	Absolute Sum of Squarees	1.6896+007	1.256+007							1
	23	tier a	704.0	007.7							ĮĻ,
	24	Gonatrainte									1ŝ
	C		المستنع	la sa						Delle	P
ford on I					bla affered and					(m) (m)	
S81 66	P 7		NONIA NEOL ESDO	shert al ce ·	The or service		R-CREC: ROWS B. C	ourses a		000	k 3

11. ノート追加機能・便利な機能

作業を効率的にするためのツールと、共同研究者との情報交換を円滑に行うためのツールが用意されています。

Prism ギャラリー

ナビゲータツールバーにあるカテゴリフォルダをクリックすると、そこに含まれるデータをギャラリー形式で表示します。 ギャラリーでアイコンを選択してエクスポート、印刷、Magic機能によるフォーマットなどを行えます。

情報シート

Info Sheet は個々のデータテーブル、またはプロジェクト全体にリンクできます。情報シートには構造情報・プロジェ

クトの詳細をトラッキングするための情報を入力します。左側の列には定数名、右側の列には値を入力します。定 数項として入力した値をフック(固定)できます。この値は非線形回帰における制限条件、データの変換、軸の範囲、 軸目盛りの位置として利用できます。

Constant	Value				
Experiment Date	Oct 03, 2007	\$			
Experiment ID	007	1			
Notebook ID	2006-C				
Project	Omega				
Experimenter	Bond, James				
Protocol	Shaken, not stirred				
Protein Conc.	0.345				
Lot number	345-45				

ピンポンボタン

画面の下側にあるツールバーのピンポンボタンは最後に移動した2つのシートを交互に表示します。ナビゲータよりもスムーズに画面を切替えることができます。

ハイライト

重要なシートにはハイライトツールを使って、目立つように黄色で枠を囲むようにしま す。共同研究者とファイルを交換する際には、この強調表示機能をうまく利用してくだ さい。

フローティング・ノート(フローティングメモ)

シートに情報を書き留めておく場合は Floating Note ツール⁽¹⁾を利用します。メモの色を 変更したり、ハイパーリンクを設定することもできます。シートを印刷またはエクスポー トする場合、メモは出力されません。

⁽¹⁾ Windows 日本語版:フローティングメモ

オーディオノート(Windows 版のみ)

Windows 版では、Audio Note ツール⁽²⁾ を使って、音声で記録できます Windows 版で作成したオーディオノートは Mac 版では再生できません。オーディオノートを含むファイルを Macintosh で開いた場合、イメージとしてスピーカアイコンが表示されますが、オーディオノートとして機能しませんのでご注意下さい。

² Windows 日本語版:マイクメモ